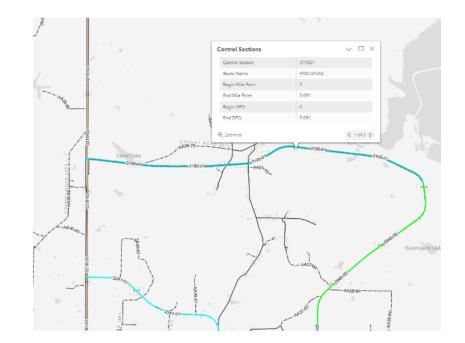

CIR strategy for FM 3129 Atlanta District

Time and Resources

CSJ 3195-01 Cass County, from US 59 to Paper mill (first 1.3 miles only)

July 11, 2024

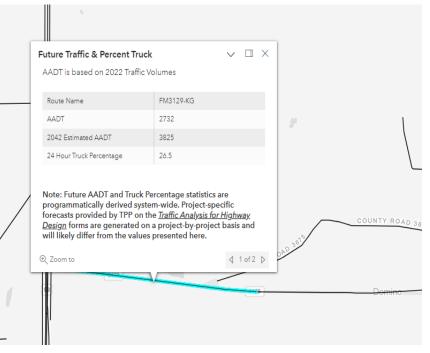
Information from District


Location, scope, typical sections, traffic

Location and Prelim. Strategy

Time and Resources

- Near Domino
- CIR planned in lanes only
- 1st 1.3 miles up to concrete section only
- Prelim. Design strategy
 - Mill 2"
 - CIR existing 4"
 - Place 2" HMA


Project location (~19 mi. S of Texarkana)

Traffic Estimates

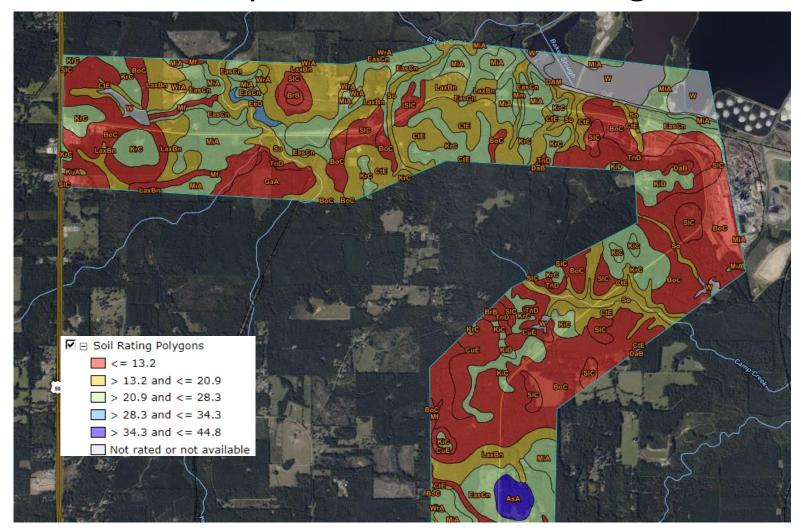
ime and Resources

- From Statewide planning map:
 - Beginning ADT 2732
 - Ending ADT 3825
 - 26.5% trucks
 - ATHWLD 14,220 lbs.
 - TF = 1.43
 - Cumulative 20 yr. ESALs 3.787 M
- From PWIM 2024:
 - Beginning ADT 4619
 - Ending ADT 8342
 - 27.2% trucks
 - ATHWLD 13,900 lbs.
 - TF = 1.53
 - 9.69 M 20-yr. ESALS
- Design based on PWIM 2024

Traffic from Statewide Planning Map

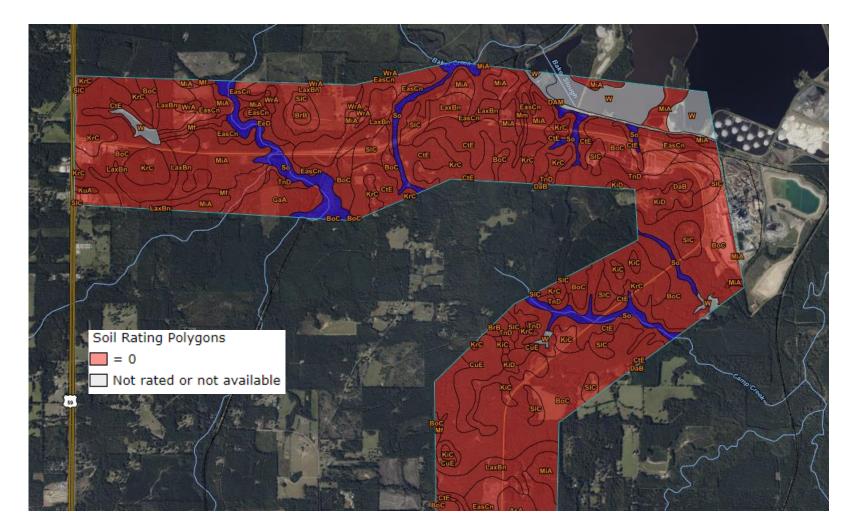
Other Observations

- EB leads to paper mill, heavier traffic towards mill
- First 1.3 miles considered from US59 towards Paper mill, up to concrete section
- Cores showed 12" of HMA
- With defects 4" to 6"



Background Information

Soils maps, GPR, FWD, roadway sampling



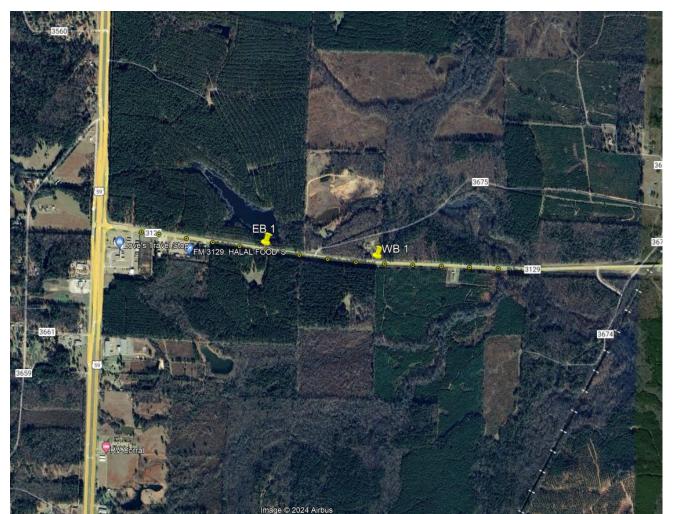
Soils Maps – Variable PI throughout

Soils Maps - Sulfates

GPR Summary TYP ~12" HMA with some sealcoats Shoulder appears similar to lane

Time and Resources

Typical EB


Localized patches 18" HMA

GPR on Shoulder

Sample Locations 2 Locations – EB and WB

es, Time and Resources

EB 1 – Structure Check / Full Sample

Time and Resources

- Rutting in both wheel paths (3/4")
- Fatigue cracking
- Stripping and cracking on center line joint
- Long crack on shoulder joint
- Shoulder 10'
- Area is very flat with standing water

Direction towards mill (EB) is in worse condition than WB. Sampled material in better condition as it was easier to mill.

WB 1 – Structure Check / Full Sample

- Road is in better condition, but milled finer (harder to mill)
- ½" rutting in WPs

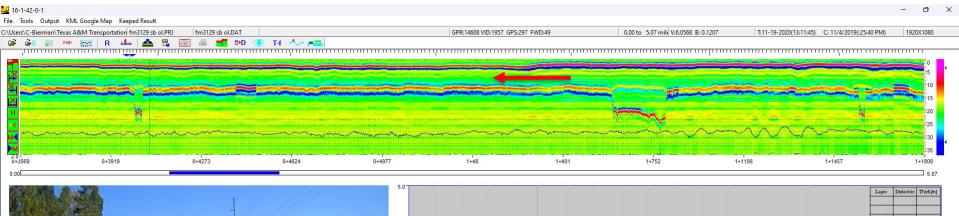
- Some fatigue cracking
- Transverse cracks
- Very wet, flat area with standing water


FWD Summary 2021 - 2024

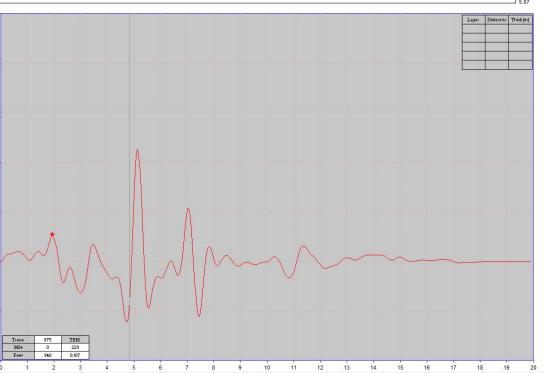
Direction	EB 2021	EB 2024	WB 2021	WB 2024
AVG Normalized Deflection (mils)	5.01	10.43	4.39	9.59
Adjusted mean HMA E (ksi)	286.7	251.9	501.3	325.9
Adjusted mean base E (ksi)	112.0	114.18	133.2	115.7
Adjusted mean Subgrade E (ksi)	36.1	18.46	23.14	18.65
Absolute error/sensor	4.62	5.43	6.54	5.61

- Deflections are similar in both directions
- 2021 testing in January, 2024 testing end of April
- Base reported as Iron Ore, FWD shows high stiffness for that material type
- Subgrade E is higher than county average (12 ksi)
- Lower asphalt layers show low stiffness in some spots, may be in poor 6 to 11"

FWD of split HMA


Top 6": 2024: Between 331 ksi and 264 ksi

s, Time and Resources


Bottom 5": 2024: Between 327 ksi and 248 ksi

3 areas noted with E values below 60 ksi

Pavement Design Strategies

Time and Resources

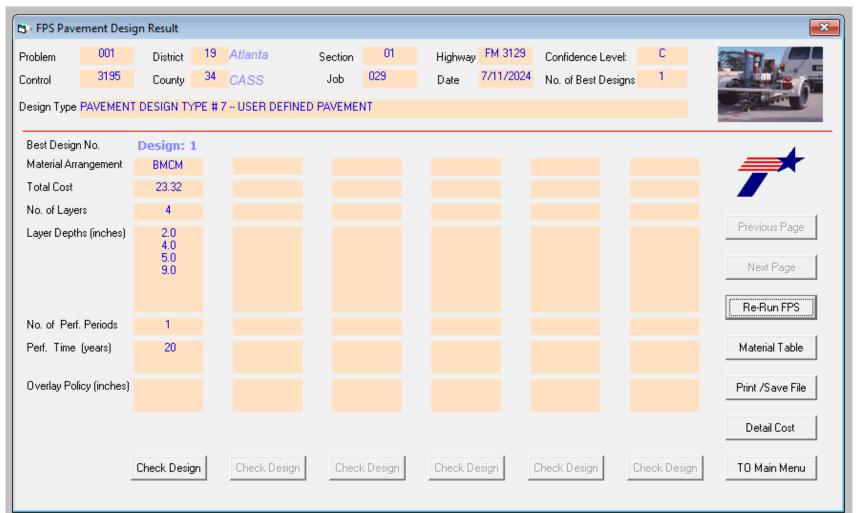
Preliminary FPS design options

Current Assumptions

- 11" of existing HMA
- 9" of flex base
- Subgrade E = 18 ksi; Flexbase ksi = 50 ksi
- Mill off 2" of HMA, CIR 4"
- Final surface should be 2" HMA
- 20 year traffic = 9.69 m ESALS
- 13,900 lbs ATHWLD

FPS design inputs

Construction & Maintenance Data		Detour Design for Overlays				To Mair			
MIN OVERLAY THICKNESS, (Inches)		1.5	DETOUR MODEL DURING OVERLAYS			2 🗧	Save to		
OVERLAY CONST. TIME, HR/DAY		10.0	TOTAL NUMBER OF LANES(for two direction)			n)	2 ≑		
ACP COMP. DENSITY, TONS/CY		1.90	NUM OPEN LANES, OVRLAY DIRECTION				0	SaveIn	
ACP PRODUCTION RATE, TONS/HF	}	200.0	NUM OPEN LANES, NON-OV DIRECTION				1		
WIDTH OF EACH LANE, (Feet)		12.0	DIST. TRAFFIC SLOWED, OV DIR			0.6			
FIRST YEAR COST, RTN MAINT (\$)		0.0	DIST TRAFFIC SLOWED, NON-OV DIR			0.6			
ANN. INC. INCR IN MAINT COST (\$)		0.0							
LYR 1 DENSE-GRAD 2 EMULS/FOAM 3 DENSE-GRAD 4 FLEXIBLE BAS 5 SUBGRADE	I ASPH BASE DED HMA Thic	I	COST PER CY 150.0 30.0 150.0 54.0 2.0	MODULUS E (ksi) 500.0 300.0 250.0 50 18.0	POISN RATIO 0.35 0.35 0.35 0.35 0.35 0.40	MIN DEPTH 2.0 4.0 5.0 9.0 200.0	MAX DEPTH 2.0 4.0 5.0 9.0	SALVAGE (≈) 30.0 70.0 90.0 75.0 90.0	
aw User Design avement									

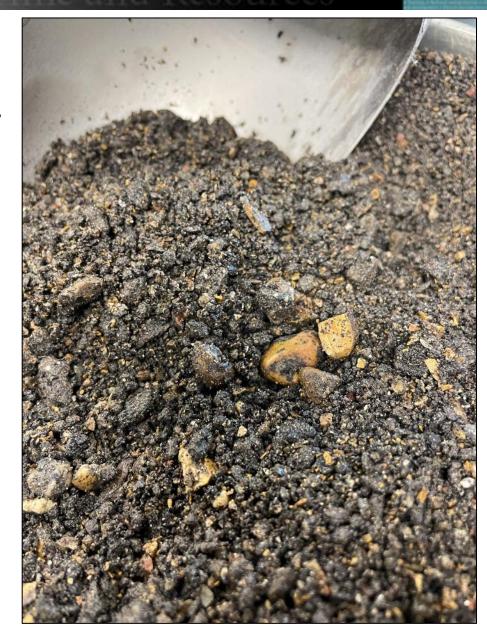


FPS design results

FPS design with 100 ksi base

Time and Resources

Mix Designs


Lab results to support pavement strategies

Lab Mix Designs

Remove 2" of HMA, CIR 4" and replace 4"

- Tex-134-E foamed asphalt design
 - 100% EB material 2" to 6"
 - Used PG 64-22 Wright out of Henderson
 - "House" lime and Type I/II cement
 - Mixed with 3% moisture before compaction – 30 gyrations
 - Active RAP test, rap is active

Active RAP test

- Quick lab test to determine the activity/quality of RAP
- Sample at 70 °C compacted in SGC, soaked 24 hrs, then IDT measured for strength
- >14.5 psi IDT is considered "active"
 RAP
- Active RAP is good for mixing into new HMA
- For CIR, active RAP has stability concerns, recommended to add fines
- Greater concern when using emulsion

٠

Mix Design Results – Foamed Asphalt

Time and Resources

Mix	<u>CIR design</u>				
Material	100% RAP				
Max dry density (pcf)	110				
Optimum moisture (%)	9.2				
Asphalt Rate (%)	1.6	1.8	2.0	2.2	
Lime Rate (%)	1	1	1	1	
Dry IDT (psi) (min. 50)	46	50	53	56	
Moisture conditioned IDT (psi) (min. 30)	44	46	52	51	

Treatment with 1% lime + 2.0% foamed asphalt meets minimum values and demonstrates almost no loss in strength after moisture conditioning

Mix Design Results – Cement or lime

Time and Resources

Mix	<u>CIR design</u>				
Material	100% RAP				
Max dry density (pcf)	110				
Optimum moisture (%)	9.2				
Asphalt Rate (%)	2.0	2.0			
Treatment	1% Cement	1% Lime			
Dry IDT (psi) (min. 50)	54	53			
Moisture conditioned IDT (psi) (min. 30)	52	52			

• Lime may have better resistance to stripping, no difference in strengths

Density investigations

ž Tex 113-E Adding 3% water MDD = 110 pcf• OMC = 9.2% Bulk Specific Gravity (30 gyr): ٠ Bulk density = 122.0 pcf (dried) • Compaction = 86.3% (Rice) OMC is very high for RAP ٠ Very flat curve and not • representative Rice Gmm = 2.27Max Density = 141.4 pcf ASTM D2726 provides more representative density target

- Use 122 pcf as initial target
- Consider using growth curve for field compaction

Summary

Selected design and FDR Materials Information

Summary and way forward

- CIR design recommendation:
 - Mill 2"
 - CIR 4" with 1% lime and 2% asphalt
 - Surface with 2" HMA surfacing
- Construction requirements:
 - Add 3% water at mill head
 - Use 122.0 pcf as MDD
 - Consider field growth curve to validate density
- If further testing is an option:
 - Cores to investigate lower half of HMA
 - Auger to get quality of base and subgrade
- Development of construction specification required